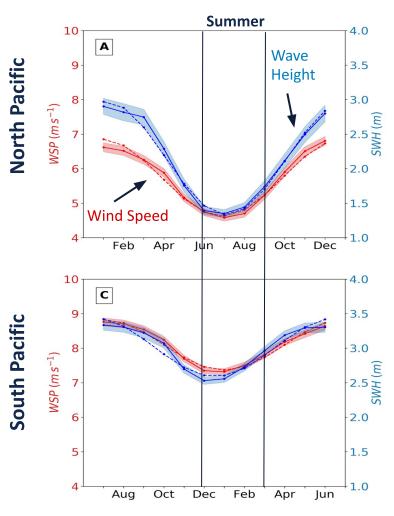
Surface Winds from January 27, 2018 (https://earth.nullschool.net)

THE SEASONAL CYCLE OF SIGNIFICANT WAVE HEIGHT IN THE OCEAN: LOCAL VS. REMOTE FORCING

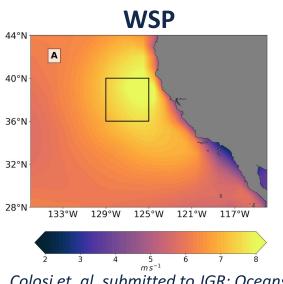
Luke Colosi, Sarah T. Gille, Bia Villas Bôas

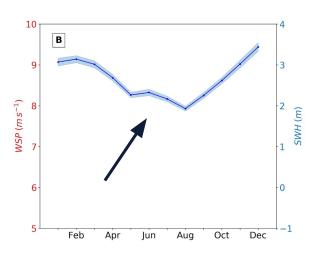

Scripps Institution of Oceanography

Acknowledgements: NASA, Remote Sensing Systems, IFREMER, Hiestand Scholarship Program

Preprint: Colosi et. al. submitted to JGR: Oceans.

Basin-scale Monthly Climatologies

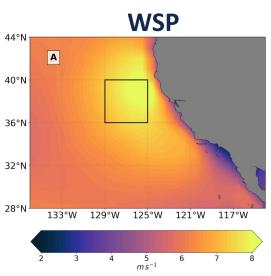

Colosi et. al. submitted to JGR: Oceans

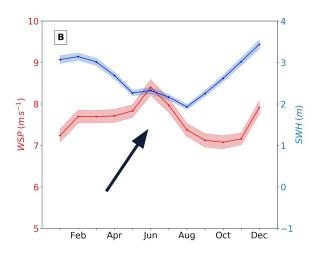

Wind-Wave Climate: Local vs Remote forcing

- At a given location, surface gravity waves are a result of locally forced "wind-sea" and remotely forced "swell" waves.
- High latitude storms generate equatorward propagating swell.
- Wave height of swell undergoes a seasonal cycle due to seasonal patterns of storm systems.
- In most world oceans, remotely forced surface waves, generated by storm system, dominate the wave field (Semedo et. al. 2011).

Deviations from hemispheric scale seasonal pattern in SWH

In the California Coast region, a bump in the significant wave height (SWH) monthly climatology is present in boreal spring and summer.

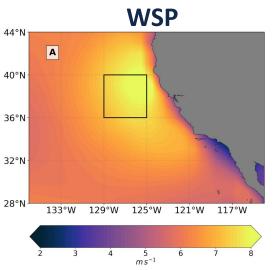


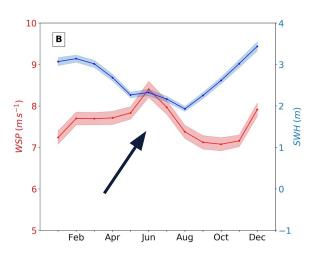


Colosi et. al. submitted to JGR: Oceans

Deviations from hemispheric scale seasonal pattern in SWH

- In the California Coast region, a bump in the significant wave height (SWH) monthly climatology is present in boreal spring and summer.
- A corresponding maximum in wind speed (WSP) occurs due to a local wind phenomena, known as Expansion Fan Winds (Winant et. al. 1988).





Colosi et. al. submitted to JGR: Oceans

Deviations from hemispheric scale seasonal pattern in SWH

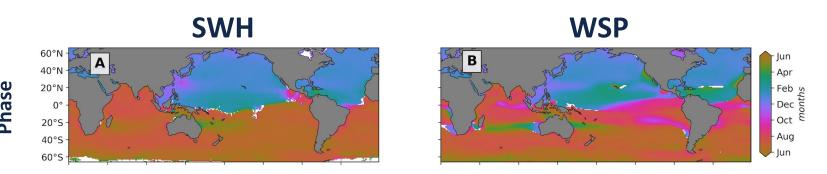
- In the California Coast region, a bump in the significant wave height (SWH) monthly climatology is present in boreal spring and summer.
- A corresponding maximum in wind speed (WSP) occurs due to a local wind phenomena, known as Expansion Fan Winds (Winant et. al. 1988).
- This bump in SWH is due to locally forced waves that dominate the wave field up to 50% of the time (Villas Bôas et. al. 2017).

Colosi et. al. submitted to JGR: Oceans

Objectives: A study of the Surface Wave Climate

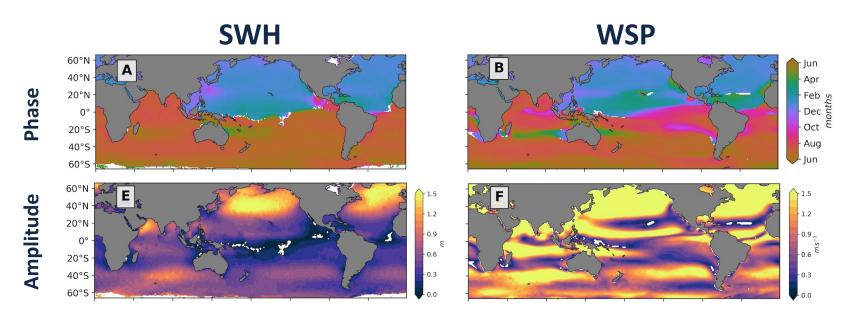
- Where in the world ocean are local winds out of phase with hemispheric scale winds?
- Is the seasonality in the California Current region seen in these atypical wind regions?
- What factors determine whether a seasonal augmentation is present in these regions?
- Can locally generated waves be responsible for augmentation?

http://www.looptt.com/content/met-office-rough-choppy-seas-next-24-48 -hrs

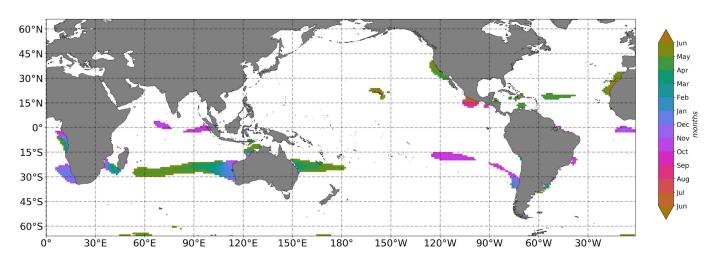

Global Satellite Derived Wave and Sea surface Wind Observations

- Data Sources (time period: 1993 to 2015)
 - SWH: Cross calibrated multi-platform satellite altimetry product from the French Research Institute for Exploitation of the Sea
 - WSP: Cross calibrated multi-platform wind vector analysis product from Remote Sensing Systems.
- WAVEWATCH III (WW3) hindcast produced by IFREMER is used to complement our analysis.

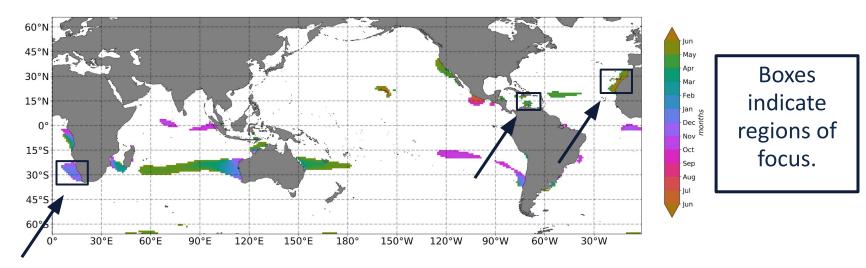
Analysis of Annual Cycle Variability


- Annual and semi-annual cycle models are least-squares fit to SWH and WSP data.
- Monthly Climatologies are used to analyze mean state of the wave and wind fields

Timing and Magnitude of the Annual cycle

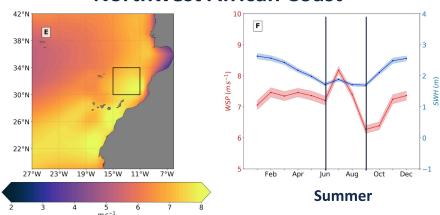

- Parameters of the annual cycle reveal:
 - Generally, annual cycle is
 - 6 months out of phase between Northern and Southern Hemisphere
 - SWH and WSP are in phase

Timing and Magnitude of the Annual cycle

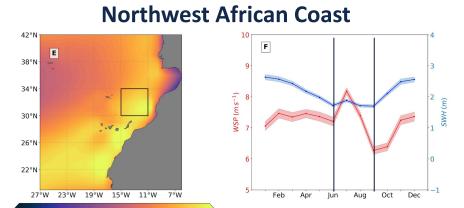

- Parameters of the annual cycle reveal:
 - Generally, annual cycle is
 - 6 months out of phase between Northern and Southern Hemisphere
 - SWH and WSP are in phase
 - Winds and Waves in the high latitudes of the Northern Hemisphere experience more seasonality than in the Southern hemisphere.

Atypical Winds: Seasonal Wind Anomaly Regions SWARs

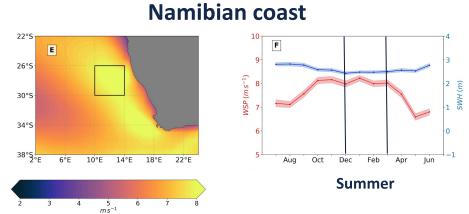
- SWARs identify atypical regions, where local winds are out of phase with hemispheric scale winds.
- Criterion for SWARs: WSP maximum occurs roughly from April through October for the Northern Hemisphere and from October through April for the Southern Hemisphere.
- SWARs are located in:
 - Eastern boundary current regions
 - Monsoon regions
 - Regions significantly sheltered from remotely forced waves


Atypical Winds: Seasonal Wind Anomaly Regions SWARs

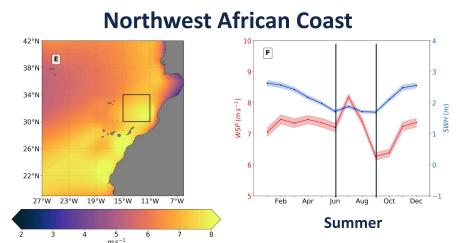
- SWARs identify atypical regions, where local winds are out of phase with hemispheric scale winds.
- Criterion for SWARs: WSP maximum occurs roughly from April through October for the Northern Hemisphere and from October through April for the Southern Hemisphere.
- SWARs are located in:
 - Eastern boundary current regions
 - Monsoon regions
 - Regions significantly sheltered from remotely forced waves

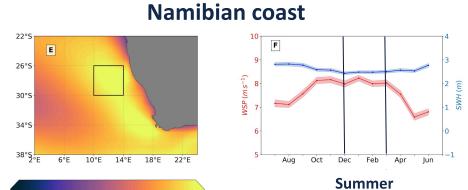

Regional Climatology: Canonical Case

Northwest African Coast


 Northern Hemisphere SWAR exhibits local maximum in SWH in summer coinciding with local wind maximum.

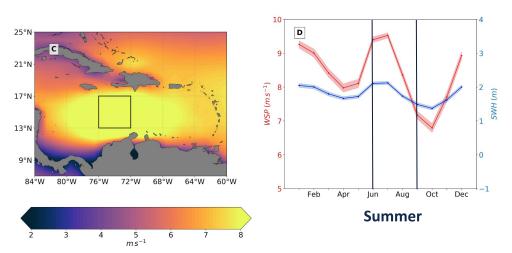
Regional Climatology: Canonical Case


Summer


 Northern Hemisphere SWAR exhibits local maximum in SWH in summer coinciding with local wind maximum.

 Southern Hemisphere SWAR exhibits no local maximum in SWH in summer.

Regional Climatology: Canonical Case



 Northern Hemisphere SWAR exhibits local maximum in SWH in summer coinciding with local wind maximum.

- Southern Hemisphere SWAR exhibits no local maximum in SWH in summer.
- There are other factors than local winds that determining whether a seasonal augmentation is present. Factors may include:
 - Exposure to swell generated in the high-latitude
 - Swell's annual cycle amplitude
 - Strength of local winds

Regional Climatology: Sheltering Case

South Caribbean Sea

Colosi et. al. submitted to JGR:Oceans

- Wind and wave climates are distinctly different than Eastern Boundary current Regions:
 - Strong semi-annual cycles for winds and waves
 - Almost no annual cycle for waves
 - In-phase wind and waves
- Lack of an annual cycle for waves suggests SWH is forced entirely by local winds
- Antilles archipelago shelters SWAR from waves propagating from high latitudes

Wave Age: A Separation Criterion for Sea State

- Hypothesis: SWH seasonal augmentations are caused by local wind events if locally forced waves in SWARs dominate the wave field during summer months.
- We use wave age to separate growing seas from fully developed seas (Donelan et. al. 1992):

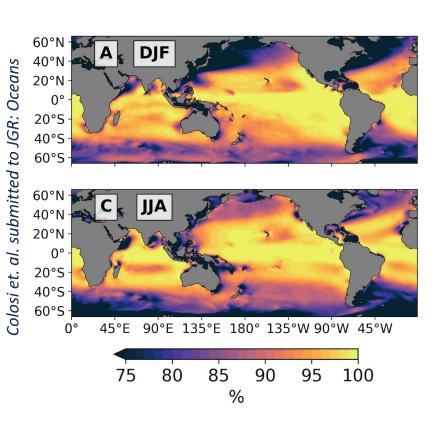
$$A = \frac{c_p}{U_{10}} \quad \text{where} \quad \begin{array}{l} A > 1.2 \longrightarrow & \text{Remotely Forced Waves (swell)} \\ A \leq 1.2 \longrightarrow & \text{Locally Forced Waves (wind-seas)} \end{array}$$

where c_p is peak phase speed and U_{10} is wind speed 10 meters above the ocean surface.

Wave Age: A Separation Criterion for Sea State

- Hypothesis: SWH seasonal augmentations are caused by local wind events if locally forced waves in SWARs dominate the wave field during summer months.
- We use wave age to separate growing seas from fully developed seas (Donelan et. al. 1992):

$$A = \frac{c_p}{U_{10}} \quad \text{where} \quad \begin{array}{l} A > 1.2 \longrightarrow & \text{Remotely Forced Waves (swell)} \\ A \leq 1.2 \longrightarrow & \text{Locally Forced Waves (wind-seas)} \end{array}$$


where c_p is peak phase speed and U_{10} is wind speed 10 meters above the ocean surface.

• **Probability of Swell** (Chen et. al. 2002) quantifies the number of swell events (N_{swell}) relative to total number of wave events (N_{total}) over a time period:

$$P_s = rac{N_{swell}}{N_{total}}$$
 where $N_{total} = N_{swell} + N_{wind}$


Probability of swell provides the fraction of time that the wave field is swell-dominated.

Probability of Swell

 Seasonal probability of swell is calculated using Climate Forecast System Reanalysis (CFSR) winds and WW3 peak frequency.

Probability of Swell

 Seasonal probability of swell is calculated using Climate Forecast System Reanalysis (CFSR) winds and WW3 peak frequency.

- In Northern Hemisphere SWARs, the wave field is dominated by wind-seas a higher percentage of time than it is in surrounding regions.
- In Southern Hemisphere SWARs, probability of swell is not as low as in Northern Hemisphere SWARs.
- Results suggest:
 - Seasonal augmentations in SWH result from locally forced wave contributions to SWH.
 - Southern Hemisphere SWARs are less likely to be dominated by locally forced waves.

Conclusions

- Atypical WSP seasonal cycles, out of phase with hemispheric-scale winds, are identified as SWARs.
- Anomalous patterns of wind variability do not necessarily drive anomalous patterns of wave climatology.
- Statistics that define the coastal California SWAR are not universal because the fraction of wave variability attributed to local wind events varies depending on regional and wave field characteristics.
- We present a method to evaluate the relative importance of wind-sea and swell from mean behavior of the wave field without the need for directional wave spectra.
- Global observations of directional wave spectra from remote sensing platforms such as Chinese-French Oceanography Satellite (CFOSAT) or other proposed Doppler oceanography missions have the potential to further our understanding of the effects of local winds on the wave climate:
 - Concurrent observations of wind and waves.
 - Distinguish the roles of swell, wind-seas, and mixed seas in determining wave conditions.

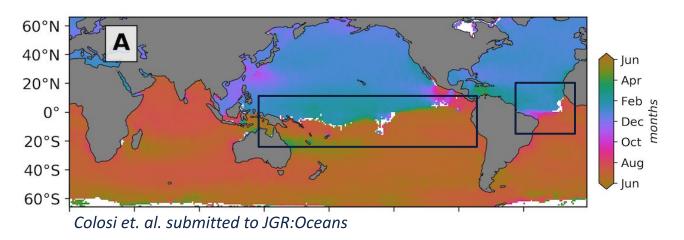
References

- Winant, C. D., Dorman, C. E., Friehe, C. A., & Beardsley, R. C. (1988). The marine layer off northern California: An example of supercritical channel flow. *Journal of atmospheric sciences*, 45(23), 3588-3605.
- Villas Bôas, A. B., Gille, S. T., Mazloff, M. R., & Cornuelle, B. D. (2017). Characterization of the deep water surface wave variability in the California Current region. *Journal of Geophysical Research: Oceans*, 122(11), 8753-8769.
- Young, I. R. (1999). Seasonal variability of the global ocean wind and wave climate. *International Journal of Climatology: A Journal of the Royal Meteorological Society*, *19*(9), 931-950.
- Semedo, A., Sušelj, K., Rutgersson, A., & Sterl, A. (2011). A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5), 1461-1479.
- Jiang, H., & Chen, G. (2013). A global view on the swell and wind sea climate by the Jason-1 mission: A revisit. *Journal of Atmospheric and Oceanic Technology*, 30(8), 1833-1841.
- Donelan, M., Skafel, M., Graber, H., Liu, P., Schwab, D., & Venkatesh, S. (1992). On the growth rate of wind-generated waves. Atmosphere-Ocean, 30(3), 457-478.
- Chen, G., Chapron, B., Ezraty, R., & Vandemark, D. (2002). A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. *Journal of Atmospheric and Oceanic Technology*, 19(11), 1849-1859.

Resources

Preprint for Colosi et. al. submitted to JGR:Oceans 2021: https://www.essoar.org/doi/10.1002/essoar.10506029.1

Source Code: https://doi.org/10.5281/zenodo.4505581


Preliminary Data Repository: https://drive.google.com/drive/folders/1fxhS00Oz8CSbYIUxcDfann2s65t3m5-B?usp=sharing Github Repository: https://github.com/lcolosi/WaveClimatology.

Contact information: Luke Colosi; lcolosi@ucsd.edu; (831) 840-1612; lcolosi@ucsd.edu; (831) 840-1612; lcolosi@ucsd.edu; (831) 840-1612; lcolosi@ucsd.edu; <a h

SUPPLEMENTARY SLIDES

SWH Phase: Discontinuity along the Equator

- SWH displays a sharp phase discontinuity off the equator in the Pacific and Atlantic.
- This discontinuity identifies the transition between regions with swell originating primarily in the Northern Hemisphere and swell primarily from the Southern Hemisphere.
 - We refer to this transition as the swell phase discontinuity.
- The swell phase discontinuity coincides geographically with **swell fronts** defined based on mean wave direction (Young 1999; Semedo et. al. 2011; Jiang et. al. 2013).
- Here, we provide a new method for characterizing swell fronts without directional information.

