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Surface waves mediate momentum, mass, heat, and energy
fluxes between the ocean and atmosphere

Video: Laurent Grare

Quantifying the influence surface waves have on air-sea interactions will help advance
climate models through improved parameterization of air-sea fluxes occurring at scales

unresolved by models.
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This motivates the need for high quality measurements of
surface waves to improve our understanding of the underlying
physics of the air-sea system.
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Autonomous vehicles are well suited to study surface waves

Historical Autonomous surface vehicles

Wave Buoys

Satellites Saildrones [ = Photo: Nick Statom
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Photo: Ted Pease

Autonaut

New generation of
instrumented platforms

>
;t—tp:://autoz;tus.com/veelso
Advantages:
1. Uncrewed
Photo: Nick Statom 2 Long duration deployments
3. Remote area data collection
4 Measurements taken over broad spatio-
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Autonomous platforms measure the wave spectrum from the
vehicle’s motion

How can we interpret wave
measurements from these types of
platforms and what are the challenges?

: S
" Video: Nick Statom

Note: See Lenain and Melville 2014, Thomson et al. 2018, and Grare et al. 2021 for more details. 4/18



The observed wave frequency differs due to the relative
motion of the platform with respect to the waves

t = 0.0 seconds
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Frame
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Moving
Frame
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Platforms motion relative to the incoming waves causes the
observed frequency to be Doppler shifted

Fon(k,0,U, ) = fin(k) — U C08(8 = 6)

/ /1N N\

Observed frequency_: Intrinsic frequency: \wavenumber Platform  Angle between the
Frequency measured in Frequency measured  maonitude  speed  direction of wave and
the moving reference in the absence of platform propagation
frame of the platform platform motion G )
Y

Doppler Shift Term

Observations of wave spectra in a reference frame free from Doppler effects
requires a mapping from observed to intrinsic frequency.
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Goals

e Develop a general approach to account for platform motion artifacts in the
directional wave spectrum from Doppler effects, building upon the work of
Longuet-Higgins (1986), and Collins et al. (2017).

e Validate this method using a unique dataset collected from a fleet of Wave
Gliders off the coast of Southern California in September 2020.

e Apply this method to the SMODE pilot dataset collected from the WHOI Wave
Glider.
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Directional and omni-directional wave spectrum computed from
the motion of the platform
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fab (HZ)

Spectrogram of surface waves observed by a wave glider
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Modulations of spectra are particularly visible at high frequencies.
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fab (HZ)

Spectrogram of surface waves observed by a wave glider
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Modulations of spectra are particularly visible at high frequencies.
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Spectrogram of surface waves observed by a wave glider
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The platform’s motion is impacting the observed wave spectra.
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Spectrogram of surface waves observed by a wave glider
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The platform’s motion is impacting the observed wave spectra.
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Spectrogram of surface waves observed by a wave glider
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The platform’s motion is impacting the observed wave spectra.

11/18



Methods to account for Doppler shift in wave spectra

1D Method
Assume all waves come from the same direction
Observe 1D Spectrum M.ap f.ror.n observed to . M.'i\p -1D Spectrum into
intrinsic frequency intrinsic frequency space

> 8 o
Sov(fob) —>  fau(KOU, ) = fin(k) ——  Sin(fin) - a;b (Collins et al. 2017)
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Methods to account for Doppler shift in wave spectra

1D Method
Assume all waves come from the same direction
Observe 1D Spectrum M.ap f.ror.n observed to . M.'i\p -1D Spectrum into
intrinsic frequency intrinsic frequency space

> 8 o
Sov(fob) —>  fau(KOU, ) = fin(k) ——  Sin(fin) - a;b (Collins et al. 2017)

2D Method (our approach)
Uses directional distribution of wave field

Observe 2D Spectrum Map from observed to ~Map 2D Spectrum into Compute 1D spectrum
Pagh) 8f b 27 8 A
Sov(for,0)  —— (K 03U, ¢) > fin(k) ——>  Sin(fin,0) - 3 ff’ > Sin(fin) = /0 Sin(fin0) - a}t,bdﬂ
m mn

We need to use a full 2D spectrum.
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Less high-frequency waves can be resolved the faster a

platform moves with the waves
Cutoff Frequency f.(U,6,)
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Less frequencies resolved as U increases or 6, = 0.
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Comparison between 1D and 2D methods
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Comparison between 1D and 2D methods
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OBSERVED

1D METHOD

2D METHOD

(our approach)

Comparison between 1D and 2D methods
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Comparison between 1D and 2D methods
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SMODE Pilot Experiment 2021
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SMODE expands the range of environmental conditions.
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Comparison between observed and intrinsic frequency
spectrograms

Tight Square Trajectory
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Conclusions

® An autonomous platform’s motion impacts the spectral measurements of waves.

e Modulations in wave spectra depend upon the wave frequency, the platform
speed, and the angle between the direction of wave and platform propagation.

e Theintrinsic frequency frame provides a coherent way to compare wave
measurements from moving platforms and provide accurate measurements of

directional surface waves down to short scales (O(1m)).

® Speed and direction of the platform should be considered carefully in
experimental planning.

Colosi et al. in-prep for the Journal of Atmospheric and Oceanic Technology 2022. 17/18
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Experimental Assets and Environmental Conditions
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Less high-frequency waves can be resolved the faster a
platform moves with the waves

Cutoff Frequency f.(U,¥6,)
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