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Motivation Parameters of Annual and Semi-annual Model Probability of Swell: Consistency between Metrics
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Satellites measures SWH and WSP globally over large time periods. We used data from January 1st,
1993 to December 31st, 2015.
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IFREMER SWH Satellite Altimetry Data
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CCMP2 is a gridded wind vector product consisting of a mixture of satellite remote sensed, in . LWAR. This is consistent with our hypothesis of local forced wave causing the deviation
from the SWH annual cycle
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All analysis between IFREMER SWH and CCMP2 WSP is o SN 1 || | I R in order to further understand the dynamics between swell and wind-sea waves

implemented with monthly averaged 1x1 degree o influencing the magnitude of the SWH deviation

spatial resolution data. o

Understanding SWH climatology globally can help obtain realistic high-resolution ocean
wave models.
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