The Seasonal Cycle of Significant Wave Height in the Ocean: Local vs. Remote Forcing

Luke Colosi, Sarah T. Gille, Bia Villas Boas

Scripps Institution of Oceanography

Acknowledgements: Nasa, Remote Sensing Systems, Institut français de recherche pour l'exploitation de la mer

Shapshot of surface wind speed for January 27, 2018. From https://earth.nullschool.net

SCRIPPS INSTITUTION OF OCEANOGRAPHY **UC**SanDiego

General Wave forecast in California and many other regions around the world

Spring Months

Winter Months

General Wave forecast in California and many other regions around the world

Spring Months

Winter Months

Locally Forced Waves

Short Period (high frequency)

Short Wavelength

Choppy Waves

Local vs. Remote Forcing

Remotely Forced Waves

 Long Period (low frequency) Long Wavelength • Well-sorted Swell

Clean widely spaced swell lines

Significant Wave Height (SWH) Seasonal Cycle

General characteristics of SWH seasonal cycle:

Phase SWH NH shifted by pi from the phase of the SH

Seasonal Cycle NH > Seasonal CYCIE SH (signal strength)

Daily mean SWH in the Northern and Southern Hemisphere from January 1st, 2014 to December 31st, 2015

Time (months)

SWH undergoes an annual sinusoidal cycle in response to the seasonal changes in storm patterns

Wind Stress Magnitude

longitude

SWH undergoes an annual sinusoidal cycle in response to the seasonal changes in storm patterns

Wind Stress Magnitude

Deviations in the SWH rthern California 2°x2° Regional Seasonal Cycle

 Intra-annual Variability in the swh seasonal cycle of the Coast of California during the spring and summer months due to local wind event (Villas Boas et al., 2017) • Other regions around the world where similar wind events occur (Winant et al., 1988)

Climatology

FIG. 14. Areas of the world where supercritical flow might be expected to occur in the marine layer.

Research Question

1)Does a deviation in the SWH seasonal cycle extend to other eastern boundary regions in ocean basins around the globe? 2)What can the global structure of the SWH and wind stress magnitude seasonal cycles illustrate about the location of waves generation and its forcing mechanism?

• Cross Calibrated multi-platform satellite altimeter SWH measurements produced by the Institut français de recherche pour l'exploitation de la mer (Ifremer) • Cross calibrated multi-platform wind vector analysis data produced by Remote Sensing Systems.

Netnocs

 Modeling of seasonal cycle: unweighted least square fit • Characteristics of Seasonal Cycle: Root mean square residual O Amplitude O Phase Constant R² (Coeficient of Determination)

Results and Discussion

Global Phasing of Seasonal cycle for SWH and Wind Stress Magnitude

Regional Climatologies in Eastern Boundary Regions

Time (month)

Conclusion

• Deviations in the SWH seasonal cycle can be observed in other regions Magnitude of SWH deviation from the seasonal cycle is determined/ modulated by local wave conditions

Therefore, we have a better idea of where and when to SUM

Supplemental Slides

Ripples to chop to wind waves

ength of fetch

Changing to swell

How do we characterize waves?

$\bullet T = Period$ • H = Height • A = Amplitude

Single frequency Parameters

• L = Wavelength

Local vs. Remote Forcing The surface wave field in a given region results from the combined effect of both local and remote forcing

Locally Forced Waves Short Period (high frequency) Short Wavelength Choppy Waves

Remotely Forced Waves

- Long Period (low frequency)
- Long Wavelength
- Well-sorted Swell

The stage of development of waves is quantified by Wave Age:

Where C_p = Phase Speed of the Wave U_{10} = Wind Speed at 10m above the ocean surface Wave age is used to separate wind seas from fully developed seas such that: $C_p / U_{10} < 1.2$ Wind Seas $C_p / U_{10} >= 1.2$ Fully Developed Seas (Swell)

Second approach with Probability of Swell using

longitude

longitude

MAM

JJA

longitude

SON

Second approach with Probability of Swell using

longitude

SON

Sate Ites

 Calibration of individual Satellite Altimeter measurements Inter-calibration between Satellite observations Limitations of Satellite altimetry data product prevalent to this project: High frequency waves (short period) Large amplitude waves (large SWH)

Mechanics causing Deviations

Coastal Topography

Inversion capping marine layer

Geostropic Flow

FC

Thermal Low

Island Shadowing in the Equatorial Region

longitude

longitude

longitude

Other Characteristics of the SWH Annual Seasonal Cycle

Other Characteristics of the WSM Annual Seasonal Cycle

Close look at the phasing of wind stress magnitude for the annual seasonal cycle model and the annual and semiannual seasonal cycle model

Determining the "best" fit model

SWH

Wind Stress Magnitude

Model of Best Fit Using Incomplete Gamma Function for WSM

Second approach with Probability of Swell using

